A Brief History of Islanded Systems using Renewable Energy

Phil Maker <pjm@pcorp.com.au>

Powercorp Pty Ltd <www.pcorp.com.au>

International Minigrids Conference, Newcastle, 8-9 November 2010. Abstract

A review of Islanded Systems using renewable energy located in Antarctica, Alaska, Australia and the Azores including methods used and lessons learnt.

What are we talking about?

Ross Island, Antarctica.

This talk is about:

- ► Isolated grids which supply utility grade power in the 200kW to 20MW range.
- History and deployed systems.

It is not about the *Big Grid*, IEEE Islanded Systems, or small house hold systems.

"There had been certain difficulties during the expedition and afterwards, There was no use denying it, I had simply told the story from my own point of view, as honestly as I could." – Tenzing Norgay.

Example Ross Island Wind Energy

Where

Enercon E33 at Ross Island.

Antarctica: Mawson, Ross Island.
Australia: Bremer Bay, Cocos Island,
Coral Bay, Denham, Esperance,
Hopetoun, Rottnest Island, King
Island, Thursday Island, Marble Bar,
Nullagine

Atlantic: Flores, Graciosa, Bonaire, Cape Verde, St Helena, ..

Alaska: Kotzuebue, St Paul, Tin City, Savoonga, Nome, Hooper Bay.

Another place: Greece x 2, Norway x 2, Philipines, India, Kenya, Estonia, China. ...

See Wikipedia or Ackermann.

POWERCORP TELLIGENT POWER SYSTEMS

WTG at South Pole

Early systems typically used small 0.1 to 10kW Wind Turbines to charge lead acid batteries and/or drive lights directly.

- ► Early lighting systems, e.g. on the Fram.
- ▶ Jacobs (US).
- Dunlite (AUS).
- ► Elektro (SWITZ).

A large number of systems were deployed, some which are still in use.

Windmatic

- Windmatic, Bonus, Vestas (DEN) results in an 80kW modern tubular tower, 3 blade upwind design.
- Kenetech, etc (US) concentrate on high technology solutions.
- Interesting designs, e.g. MBB Monopterus.
- Explosion of EU machines in USA followed by collapse.
- Helgoland Island System with MAN and SMA.

Generally low penetration.

Mod 0 Wind Turbine.

- Cape Clear SMA and MAN.
- Ratlin Island.
- Outer Mongolia.
- Experimental Battery Systems, scaled up 12V systems using a mixture of droop and isochronous.
- Enercon Wind Energy Converters: E40 500kW.

Denham WTG and Gen Power.

- Denham (AUS): demonstration project using first 1, then 3 and 4 Enercon WTG reaching around 60% penetration. First attempt at Flywheel stabilisation of the grid.
- St Paul (US): using load dumps and synchronous compensators.
 Note that this system reaches 100% penetration.
- King Island (AUS): using a mixture of battery storage and load dumps.

verview Past **Now** Variability Generation Load Storage Stabilisation Alaska King Island Coral Bay Conclusion

Now: Wind Diesel and PV Diesel Systems

WTG at Ross Island

Antarctica: Mawson, Ross Island.
Australia: Bremer Bay, Cocos Island,
Coral Bay, Denham, Esperance,
Hopetoun, Rottnest Island, King
Island, Thursday Island, Marble Bar,
Nullagine

Atlantic: Flores, Graciosa, Bonaire, Cape Verde, St Helena, ..

Alaska: Kotzuebue, St Paul, Tin City, Savoonga, Nome, Hooper Bay.

Another place: Greece x 2, Norway x 2, Philipines, India, Kenya, Estonia,

China.

See Wikipedia or Ackermann.

Variability

Renewable energy is highly variable, the rest of this talk deals with methods to manage that variability.

Controlling Renewable Generation

Diesel and Wind Systems Low Load Diesel TM.

Control generation, e.g.

- ► Limit Penetration < 20%.
- Limit the Renewables, e.g. Denham or Esperance in order to achieve 60% penetration. Note that Denham uses Inverter based WTG.
- Replace diesels with sets that can run at low load in order to achieved 93% penetration.

Controlling the Load

Scott Base.

- ▶ Dump the excess power.
 - King Island
 - Bonaire.
- Use the excess power: e.g.
 - St Paul uses electrical heating.
 - Rottnest Island uses the desalination plant.
 - Mawson Stations uses the heat loop.
- Either switched, thyristor or inverter based control.

Storage

Small Vanadium Redox Battery.

Long Term:

- ▶ Batteries: King Island, Bonaire.
- ▶ Pumped Hydro: EU Grid.
- Hydrogen: Ramea, Froya.
- Compressed Air

Short Term:

- Flywheels: Marble Bar, Nullagine, Graciosa.
- ► Super capacitors.

Stabilisation

Powerstore Flywheel at Coral Bay.

Bonaire, King Island, Mawson, Flores, Coral Bay, Rottnest Island, Kalbarrim St Paul.

Typically using a mix:

- ► High Speed Load Control.
- ► Flywheel Storage.
- Synchronous Compensators.

Note you need to consider both:

- ► Frequency (Hz) and Power (kW).
- Voltage (V) and Reactive Power (kvar).

Alaska

St Paul, Wales:

- ► ≥ 100% Penetration using Synchronous Compensator to generate kvars.
- Load control using heat dumps.
- ▶ Typically not using inverter based wind turbines.

Ian Baring Gould at NREL has a number of papers summarising these systems.

King Island

King Island.

- Vanadium Redox Battery.
- Frequency Controlling Load Bank.
- Graphite Block Heat Storage.
- Both Wind and PV.
- ▶ 50% Average Penetration.

Coral Bay

Vergnet WTG.

- ➤ 3 x Vergnet 225kW WTG which are induction machines!
- ▶ 4 x 320kW Low Load Diesels(tm).
- ▶ 18MWs at +/-500kW Powerstore which provides frequency and voltage stabilisation.

This results in 93% penetration.

Coral Bay

Coral Bay Performance: 93% Penetration with Stabilisation

Conclusion

- High Penetration Renewable Systems have been commercially demonstrated. This is not research anymore.
- One part of the Smart Grid is best demonstrated on remote systems now.
- The big grid can get to a high penetration of renewables using the methods described. (Can someone tell Radio National please).

"To know a thing well, know its limits.
Only when pushed beyond its tolerances will its true nature be seen" – The Amtal Rule.

